Damien Adcock Barenbrug Australia

Which species: where and why?

Grasses, Legumes & Herbs

Why?

Benefits

Potential benefits from utilising multispecies pastures

Soils & Plants

- Reduced reliance on N fertiliser
- Shoulder season productivity
- Contribute to healthy soils

2

Grazing Animals

- Improved milk production
- Reduced CH₄ emissions
- Improved animal health

3

Business

- Reduced risk
- Financial gain

4

Environment

- Reduced N₂0 production
- Ecosystem services
- Sustainability
- Resilience to climate change

Challenges

Some challenges for adoption of multispecies pastures

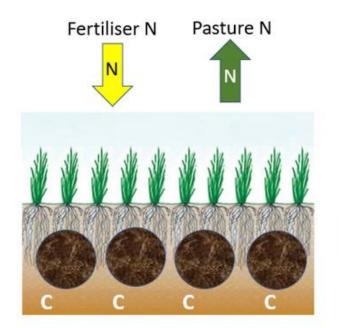
2

Business

Soils & Plants

- Seed mixture design
- Establishment & Agronomy
- Monitoring & Measurement

• Shift in thinking & Knowledge



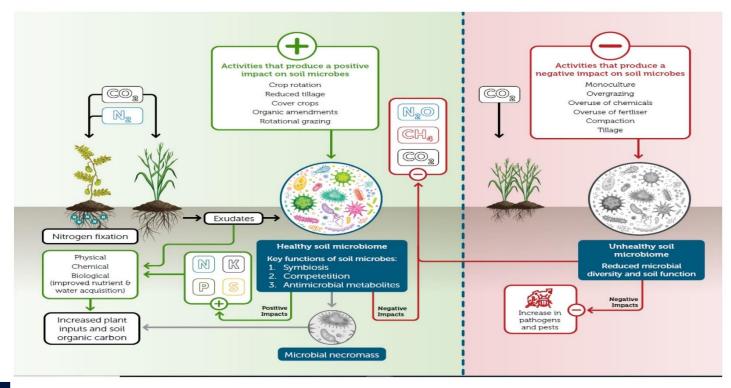
Animals

- Complex grazing management
- Lower feed value?
- Species loss due to gazing
- Reduced yields when grazed?

With diversity comes complexity

Monoculture (ryegrass)

Pasture N N₂ fixation Cocksfoot Luceme Fescue Red Clay


Multispecies

Impacts of pasture species composition and nitrogen management on soil organic matter and carbon stores, long-term nutrient availability and pasture productivity are unknown (Paustian *et al.* 2019).

Pasture change

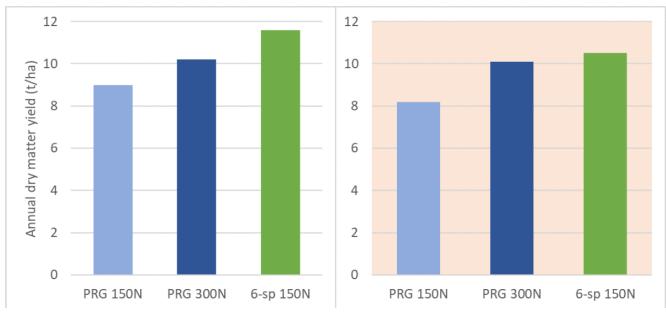
Building a healthy soil

Source: Khangura R, et al. (2023)

Multispecies Research

European agro-diversity project (Finn et al. 2016 and others).

Investigating if multispecies increase yield & drought resilience, with lower nitrogen inputs.


Other results to date inconsistent within & between multispecies mixtures.

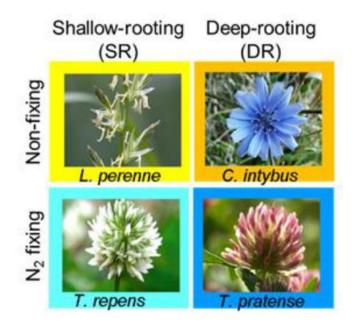
A multitude of factors determine the success of a multispecies sward:

- Soil type and fertility
- Species choice
- Proportion of functional groups
- Grazing management practices
- Fertiliser regimes

Dry matter production

Average Season

Summer drought


Source: Finn et al. 2016

Where

Species selection

Pasture species selection is crucial to ensure optimal production for animal requirements:

- Species from each functional group
- Suited to the specific growing conditions
- Consider climate, soil type, rainfall distribution, and grazing requirements
- Maximise dry matter yield, feed quality and animal health
- Improve ecosystem services and minimise environmental impact.

Features & Attributes

Suitable varieties should be selected on the basis of attributes such as:

• Performance:

Seek local trial results (e.g., PTN or FVI) for seasonal yields, feed quality and persistence

• Maturity:

Choose an earlier-maturing variety if in the drier part of a species' zone of adaptation

• Dormancy:

Many pasture species exhibit a dormancy mechanism.

• Plant habit:

Prostrate or erect

- Grazing tolerance
- Seedling vigour

• Tolerance to pests and disease.

Climate

Temperature:

Different grasses, legumes and herbs tolerate varying temperature ranges, selecting species adapted to local conditions is essential.

Rainfall:

Areas with higher rainfall might benefit from different species compared to drier regions.

Growing season length:

Choosing species with a suitable growing period for the local climate ensures consistent feed availability.

Other important factors which influence growing conditions include:

- Soil profile and water holding capacity
- Elevation and day/night temperature variation
- Slope and aspect

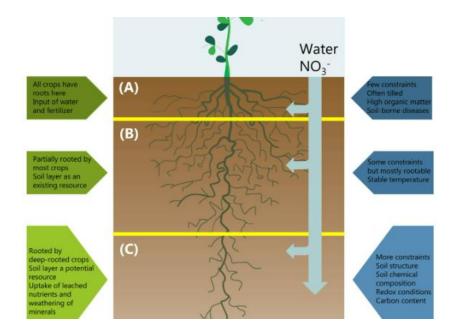
Soil-Plant Interactions

Uptake of multispecies influenced by the capacity of the soil to support growth

- Soil acidity (pH) and legume activity & N-fixation
- Fertiliser and liming for different functional groups (e.g. P requirements for grasses v legumes)
- Micronutrient requirements for complex plant communities?
- Potential inhibition of nitrification by plantain?
- Improvement in soil structure, water holding capacity and SOC
- Increased potential for more microbial activity and nutrient turnover

Soil conditions

Texture:


Soil type impacts water holding capacity and nutrient availability, influencing the suitability of certain species.

Soil pH:

Adjusting soil pH through liming may be necessary to support specific pasture plants.

Drainage:

Well-drained areas might require different species compared to poorly drained ones.

Source: Thorup-Kristensen et al.

Grazing requirements

Animal type:

Different livestock classes have varying nutritional requirements, dictating the choice of pasture species.

Production goals:

Whether aiming for high milk production, weight gain, or maintaining animal health will influence pasture selection.

Grazing season:

Selecting species with diverse maturity times can provide consistent feed throughout the year.

Grazing Management

- Success under grazing depends on initial species selection, fertility management and grazing intensity
- Studies comparing the effects of defoliation on multispecies composition are variable
- Grace *et al.* (2019) observed a yield reduction of 1.9 t/ha in grazed swards compared to cut.
- No difference between defoliation method in the perennial ryegrass control
- A key aspect of any grazed pasture is its nutrition profile (i.e., protein, digestibility, fibre content, and metabolizable energy)
- Loges *et al*. (2020) found that an 8-spp. mix had, on average lower ME & crude protein compared to a Lp/Tr mix
- However, Loges *et al.* (2020) also observed that cattle preferred more diverse swards resulting in better utilisation (9.0 t DM/ha versus 8.4 t DM/ha).

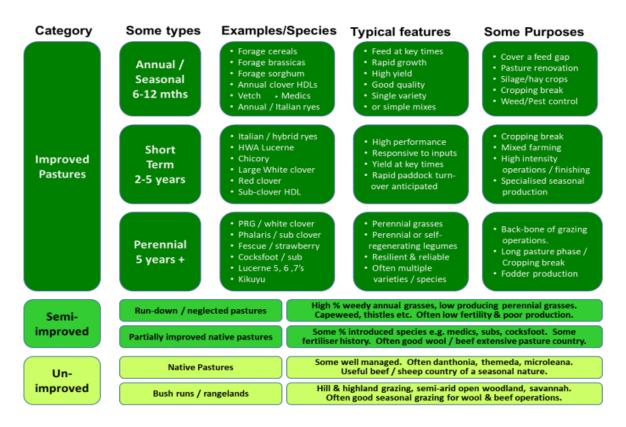
Sowing

Use certified seed.

- Sowing time is influenced by seasonal conditions.
- Some species require a minimum soil temperature for good germination.
- Adjust sowing rates to suit rainfall.
- Lower seed rate for mixtures to avoid competition (especially between grasses).

Pastures with Purpose

Different objectives


Purpose

Have a clear objective!

What are you trying to achieve?

- Improving soil health (biological, physical, chemical)
- Quality fast feed for autumn and winter
- Bulk feed with silage and hay opportunities
- Specific fodder options
- Ongoing feed for longer-term
- Persistent perennial grazing system

Choosing the right species

Functional Groups

Grasses

Ryegrass, Cocksfoot, Fescue, Prairie grass, Timothy, Oats, Barley, Phalaris, Kikuyu, Rhodes, Paspalum

Legumes

White clover, Red clover, subterranean Clover, Landino clover, Lucerne, Burr medic, Black-spotted medic,

Crimson clover, Berseem clover, Balansa clover, Shatal clover, Strawberry clover, Aliske clover, Vetch, Sainfoin

Herbs & Forbs

Chicory, Plantain, Burnet, Yarrow, Sheep parsley and brassica species.

01

02

03

Knowledge & Information

Regenerator Southern Cool Season

400mm+

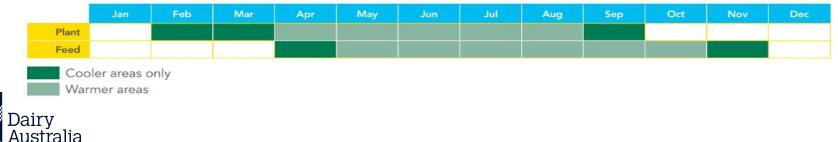
5.2-8.0

Most soil types

Sowing rates:

	High rainfall / irrigation
	Good dryland
	Marginal dryland
Dairy	Oversowing
Australia	

50-60 kg/ha 40-50 kg/ha 30-40 kg/ha 25-30 kg/ha


Variety	% weight	kg/ha @ 50kg/ha sowing rate	
Arise Italian ryegrass	10.00	5.00	Grasses and cereals for energy, bulk feed and fast establishment to provide ground cover and stability
Express forage oats	10.00	5.00	
Ryecorn	6.25	3.13	
Magnate forage barley	10.00	5.00	
Laser or Shaftal clover	6.25	3.13	Cool-season forage legumes improve feed protein and help fix nitrogen once established
Morava or Volga Vetch	10.00	5.00	
Tic bean (faba)	20.00	10.00	
Morgan field pea	15.00	7.50	
Leafmore rape	2.50	1.25	Tap-rooted annuals that improve animal feed quality, speed to first grazing and add diversity with prospect for attracting spring pollinators.
Commander chicory	3.75	1.87	
Captain Plan- tain	3.75	1.87	
Phacelia	2.50	1.25	

Fit & Use Pattern

Fit & use pattern

- Suits autumn sowing generally or late winter in southern Australia.
- Day-time temperatures should be reliably below 25°C
- Beef and lamb finishing or dairy forage, proving robust volumes of quality feed.
- Suitable for sowing as a specific crop or, for oversowing and improving summer forage prosects in a tired pasture.
- Potential for silage making in spring
- May be used as a cool-season green manure to improve soil attributes.

- If allowed to flower, may be used to attract beneficial insects in early spring.
- Suitable for grazing in 8-10 weeks after emergence.
- May offer 2-3 seasonal grazing opportunities under well managed rotational grazing, or used as a one-off standing feed crop.
- Follow-up crop or pasture required when grazing concludes in late spring or early summer.
- Offered as bare, untreated seed for sowing.

Sowing & grazing window

Multispecies swards

Multispecies benefits:

Greater functional diversity

- Equates to greater productivity (?) High levels of productivity
- More productivity @ lower N rates

More resilient to seasonal variability

Adaptation to moisture stress

Environmentally positive

Social license

Summary

Many potential benefits from using multispecies

• Less reliance on N fertiliser, improved animal health, resilience to climate variability

Some challenges to adoption remain and more information required

- Design of appropriate species mixtures
- Establishment and agronomy
- More complex grazing management
- Change in thinking and knowledge

Thank you

